立即注册 登录
即时通讯网 返回首页

NowIsGood.的个人空间 http://www.52im.net/?13124 [收藏] [复制] [RSS]

日志

数据库分库分表

热度 1已有 1691 次阅读2019-05-06 12:20 |个人分类:数据库

多台服务器分库支撑高并发读写:
首先我们先考虑第一个问题,数据库每秒上万的并发请求应该如何来支撑呢?

要搞清楚这个问题,先得明白一般数据库部署在什么配置的服务器上。通常来说,假如你用普通配置的服务器来部署数据库,那也起码是 16 核 32G 的机器配置。

这种非常普通的机器配置部署的数据库,一般线上的经验是:不要让其每秒请求支撑超过 2000,一般控制在 2000 左右

控制在这个程度,一般数据库负载相对合理,不会带来太大的压力,没有太大的宕机风险。

所以首先第一步,就是在上万并发请求的场景下,部署个 5 台服务器,每台服务器上都部署一个数据库实例。

然后每个数据库实例里,都创建一个一样的库,比如说订单库。此时在 5 台服务器上都有一个订单库,名字可以类似为:db_order_01、db_order_02 等等。

然后每个订单库里,都有一个相同的表,比如说订单库里有订单信息表,那么此时 5 个订单库里都有一个订单信息表。

比如:db_order_01 库里就有一个 tb_order_01 表,db_order_02 库里就有一个 tb_order_02 表。

这就实现了一个基本的分库分表的思路,原来的一台数据库服务器变成了 5 台数据库服务器,原来的一个库变成了 5 个库,原来的一张表变成了 5 个表。

然后你在写入数据的时候,需要借助数据库中间件,比如 Sharding-JDBC,或者是 MyCAT,都可以。

你可以根据比如订单 ID 来 Hash 后按 5 取模,比如每天订单表新增 50 万数据,此时其中 10 万条数据会落入 db_order_01 库的 tb_order_01 表,另外 10 万条数据会落入 db_order_02 库的 tb_order_02 表,以此类推。

这样就可以把数据均匀分散在 5 台服务器上了,查询的时候,也可以通过订单ID 来 hash 取模,去对应的服务器上的数据库里,从对应的表里查询那条数据出来即可。

依据这个思路画出的图如下所示,大家可以看看:
通俗易懂:å|‚何设计能æ”ˉ撑百万å1¶å‘的数据åo“架构?_2.jpg

做这一步有什么好处呢?第一个好处,原来比如订单表就一张表,这个时候不就成了 5 张表了么,那么每个表的数据就变成 1/5 了。

假设订单表一年有 1 亿条数据,此时 5 张表里每张表一年就 2000 万数据了。

那么假设当前订单表里已经有 2000 万数据了,此时做了上述拆分,每个表里就只有 400 万数据了。

而且每天新增 50 万数据的话,那么每个表才新增 10 万数据,这样是不是初步缓解了单表数据量过大影响系统性能的问题?

另外就是每秒 1 万请求到 5 台数据库上,每台数据库就承载每秒 2000 的请求,是不是一下子把每台数据库服务器的并发请求降低到了安全范围内?

这样,降低了数据库的高峰期负载,同时还保证了高峰期的性能。

大量分表来保证海量数据下的查询性能
但是上述的数据库架构还有一个问题,那就是单表数据量还是过大,现在订单表才分为了 5 张表,那么如果订单一年有 1 亿条,每个表就有 2000 万条,这也还是太大了。

所以还应该继续分表,大量分表。比如可以把订单表一共拆分为 1024 张表,这样 1 亿数据量的话,分散到每个表里也就才 10 万量级的数据量,然后这上千张表分散在 5 台数据库里就可以了。

在写入数据的时候,需要做两次路由,先对订单 ID Hash 后对数据库的数量取模,可以路由到一台数据库上,然后再对那台数据库上的表数量取模,就可以路由到数据库上的一个表里了。

通过这个步骤,就可以让每个表里的数据量非常小,每年 1 亿数据增长,但是到每个表里才 10 万条数据增长,这个系统运行 10 年,每个表里可能才百万级的数据量。

这样可以一次性为系统未来的运行做好充足的准备,看下面的图,一起来感受一下:
通俗易懂:如何设计能支撑百万并发的数据库架构?_3.jpg

读写分离来支撑按需扩容以及性能提升
这个时候整体效果已经挺不错了,大量分表的策略保证可能未来 10 年,每个表的数据量都不会太大,这可以保证单表内的 SQL 执行效率和性能。

然后多台数据库的拆分方式,可以保证每台数据库服务器承载一部分的读写请求,降低每台服务器的负载。

但是此时还有一个问题,假如说每台数据库服务器承载每秒 2000 的请求,然后其中 400 请求是写入,1600 请求是查询。

也就是说,增删改的 SQL 才占到了 20% 的比例,80% 的请求是查询。此时假如说随着用户量越来越大,又变成每台服务器承载 4000 请求了。

那么其中 800 请求是写入,3200 请求是查询,如果说你按照目前的情况来扩容,就需要增加一台数据库服务器。

但是此时可能就会涉及到表的迁移,因为需要迁移一部分表到新的数据库服务器上去,是不是很麻烦?

其实完全没必要,数据库一般都支持读写分离,也就是做主从架构。

写入的时候写入主数据库服务器,查询的时候读取从数据库服务器,就可以让一个表的读写请求分开落地到不同的数据库上去执行。

这样的话,假如写入主库的请求是每秒 400,查询从库的请求是每秒 1600。

那么图大概如下所示:
通俗易懂:如何设计能支撑百万并发的数据库架构?_6.jpg 

写入主库的时候,会自动同步数据到从库上去,保证主库和从库数据一致。

然后查询的时候都是走从库去查询的,这就通过数据库的主从架构实现了读写分离的效果了。

现在的好处就是,假如说现在主库写请求增加到 800,这个无所谓,不需要扩容。然后从库的读请求增加到了 3200,需要扩容了。

这时,你直接给主库再挂载一个新的从库就可以了,两个从库,每个从库支撑 1600 的读请求,不需要因为读请求增长来扩容主库。

实际上线上生产你会发现,读请求的增长速度远远高于写请求,所以读写分离之后,大部分时候就是扩容从库支撑更高的读请求就可以了。

而且另外一点,对同一个表,如果你既写入数据(涉及加锁),还从该表查询数据,可能会牵扯到锁冲突等问题,无论是写性能还是读性能,都会有影响。

所以一旦读写分离之后,对主库的表就仅仅是写入,没任何查询会影响他,对从库的表就仅仅是查询。

End

评论 (0 个评论)

facelist

您需要登录后才可以评论 登录 | 立即注册

返回顶部