默认
打赏 发表评论 17
想开发IM:买成品怕坑?租第3方怕贵?找开源自已撸?尽量别走弯路了... 找站长给点建议
理论经典:TCP协议的3次握手与4次挥手过程详解
阅读(230356) | 评论(17 收藏35 淘帖1 5
微信扫一扫关注!

1、前言


尽管TCP和UDP都使用相同的网络层(IP),TCP却向应用层提供与UDP完全不同的服务。TCP提供一种面向连接的、可靠的字节流服务。

面向连接意味着两个使用TCP的应用(通常是一个客户和一个服务器)在彼此交换数据之前必须先建立一个TCP连接。这一过程与打电话很相似,先拨号振铃,等待对方摘机说“喂”,然后才说明是谁。

本文将分别讲解经典的TCP协议建立连接(所谓的“3次握手”)和断开连接(所谓的“4次挥手”)的过程。

2、相关资源


更多资料请查阅《TCP/IP 详解》这本书,目前即时通讯网(52im.net)已整理出了在线阅读版。经典著作,值得收藏和随时查阅,地址是:http://www.52im.net/topic-tcpipvol1.html

另外,如果你觉得本文对网络通信的基础知识讲的有点蒙逼的话,可继续看看下面这些精华文章大餐。

➊ 网络编程基础知识:


➋ 如果觉得上面的文章枯燥,则《网络编程懒人入门》系列可能是你的菜:


➌ 如果感到自已已经很牛逼了,《不为人知的网络编程》应该是你菜:


➍ 如果看完上面的文章还是躁动不安,那看看《高性能网络编程系列》吧:


本站的《脑残式网络编程入门》也适合入门学习,本系列大纲如下:


3、先来认识TCP报文格式


TCP/IP协议的详细信息参看《TCP/IP 协议详解》中有关TCP格式的章节(点此查看《TCP/IP详解 在线版》)。

下面是TCP报文格式图:

理论经典:TCP协议的3次握手与4次挥手过程详解_1.png

上图中有几个字段需要重点介绍下:

1)序号:Seq序号,占32位,用来标识从TCP源端向目的端发送的字节流,发起方发送数据时对此进行标记。
2)确认序号:Ack序号,占32位,只有ACK标志位为1时,确认序号字段才有效,Ack=Seq+1。
3)标志位:共6个,即URG、ACK、PSH、RST、SYN、FIN等,具体含义如下:
       (A)URG:紧急指针(urgent pointer)有效。
       (B)ACK:确认序号有效。
       (C)PSH:接收方应该尽快将这个报文交给应用层。
       (D)RST:重置连接。
       (E)SYN:发起一个新连接。
       (F)FIN:释放一个连接。


需要注意的是:

  • A)不要将确认序号Ack与标志位中的ACK搞混了。
  • B)确认方Ack=发起方Req+1,两端配对。

4、3次握手过程详解


所谓三次握手(Three-Way Handshake)即建立TCP连接,就是指建立一个TCP连接时,需要客户端和服务端总共发送3个包以确认连接的建立。在socket编程中,这一过程由客户端执行connect来触发,整个流程如下图所示:

理论经典:TCP协议的3次握手与4次挥手过程详解_2.png

(1)第一次握手:
Client将标志位SYN置为1,随机产生一个值seq=J,并将该数据包发送给Server,Client进入SYN_SENT状态,等待Server确认。

(2)第二次握手:
Server收到数据包后由标志位SYN=1知道Client请求建立连接,Server将标志位SYN和ACK都置为1,ack=J+1,随机产生一个值seq=K,并将该数据包发送给Client以确认连接请求,Server进入SYN_RCVD状态。

(3)第三次握手:
Client收到确认后,检查ack是否为J+1,ACK是否为1,如果正确则将标志位ACK置为1,ack=K+1,并将该数据包发送给Server,Server检查ack是否为K+1,ACK是否为1,如果正确则连接建立成功,Client和Server进入ESTABLISHED状态,完成三次握手,随后Client与Server之间可以开始传输数据了。

SYN攻击:

在三次握手过程中,Server发送SYN-ACK之后,收到Client的ACK之前的TCP连接称为半连接(half-open connect),此时Server处于SYN_RCVD状态,当收到ACK后,Server转入ESTABLISHED状态。SYN攻击就是Client在短时间内伪造大量不存在的IP地址,并向Server不断地发送SYN包,Server回复确认包,并等待Client的确认,由于源地址是不存在的,因此,Server需要不断重发直至超时,这些伪造的SYN包将产时间占用未连接队列,导致正常的SYN请求因为队列满而被丢弃,从而引起网络堵塞甚至系统瘫痪。SYN攻击时一种典型的DDOS攻击,检测SYN攻击的方式非常简单,即当Server上有大量半连接状态且源IP地址是随机的,则可以断定遭到SYN攻击了,使用如下命令可以让之现行:

#netstat -nap | grep SYN_RECV


5、4次挥手过程详解


三次握手耳熟能详,四次挥手估计就少有人知道了。所谓四次挥手(Four-Way Wavehand)即终止TCP连接,就是指断开一个TCP连接时,需要客户端和服务端总共发送4个包以确认连接的断开。在socket编程中,这一过程由客户端或服务端任一方执行close来触发,整个流程如下图所示:

理论经典:TCP协议的3次握手与4次挥手过程详解_3.png

由于TCP连接时全双工的,因此,每个方向都必须要单独进行关闭,这一原则是当一方完成数据发送任务后,发送一个FIN来终止这一方向的连接,收到一个FIN只是意味着这一方向上没有数据流动了,即不会再收到数据了,但是在这个TCP连接上仍然能够发送数据,直到这一方向也发送了FIN。首先进行关闭的一方将执行主动关闭,而另一方则执行被动关闭,上图描述的即是如此。

  • 第一次挥手:
    Client发送一个FIN,用来关闭Client到Server的数据传送,Client进入FIN_WAIT_1状态。
  • 第二次挥手:
    Server收到FIN后,发送一个ACK给Client,确认序号为收到序号+1(与SYN相同,一个FIN占用一个序号),Server进入CLOSE_WAIT状态。
  • 第三次挥手:
    Server发送一个FIN,用来关闭Server到Client的数据传送,Server进入LAST_ACK状态。
  • 第四次挥手:
    Client收到FIN后,Client进入TIME_WAIT状态,接着发送一个ACK给Server,确认序号为收到序号+1,Server进入CLOSED状态,完成四次挥手。

上面是一方主动关闭,另一方被动关闭的情况,实际中还会出现同时发起主动关闭的情况,具体流程如下图:

理论经典:TCP协议的3次握手与4次挥手过程详解_4.png

流程和状态在上图中已经很明了了,在此不再赘述,可以参考前面的四次挥手解析步骤。

6、本文小结


关于三次握手与四次挥手通常都会有典型的面试题,在此提出供有需求的XDJM们参考:

  • 1)三次握手是什么或者流程?四次握手呢?答案前面分析就是。
  • 2)为什么建立连接是三次握手,而关闭连接却是四次挥手呢?

这是因为服务端在LISTEN状态下,收到建立连接请求的SYN报文后,把ACK和SYN放在一个报文里发送给客户端。而关闭连接时,当收到对方的FIN报文时,仅仅表示对方不再发送数据了但是还能接收数据,己方也未必全部数据都发送给对方了,所以己方可以立即close,也可以发送一些数据给对方后,再发送FIN报文给对方来表示同意现在关闭连接,因此,己方ACK和FIN一般都会分开发送。

附录:更多网络编程资料


[1] 网络编程(基础)资料:
TCP/IP详解 - 第11章·UDP:用户数据报协议
TCP/IP详解 - 第17章·TCP:传输控制协议
TCP/IP详解 - 第18章·TCP连接的建立与终止
TCP/IP详解 - 第21章·TCP的超时与重传
技术往事:改变世界的TCP/IP协议(珍贵多图、手机慎点)
通俗易懂-深入理解TCP协议(上):理论基础
通俗易懂-深入理解TCP协议(下):RTT、滑动窗口、拥塞处理
理论经典:TCP协议的3次握手与4次挥手过程详解
理论联系实际:Wireshark抓包分析TCP 3次握手、4次挥手过程
计算机网络通讯协议关系图(中文珍藏版)
UDP中一个包的大小最大能多大?
P2P技术详解(一):NAT详解——详细原理、P2P简介
P2P技术详解(二):P2P中的NAT穿越(打洞)方案详解(基本原理篇)
P2P技术详解(三):P2P中的NAT穿越(打洞)方案详解(进阶分析篇)
P2P技术详解(四):P2P技术之STUN、TURN、ICE详解
通俗易懂:快速理解P2P技术中的NAT穿透原理
Java的BIO和NIO很难懂?用代码实践给你看,再不懂我转行!
网络编程懒人入门(一):快速理解网络通信协议(上篇)
网络编程懒人入门(二):快速理解网络通信协议(下篇)
网络编程懒人入门(三):快速理解TCP协议一篇就够
网络编程懒人入门(四):快速理解TCP和UDP的差异
网络编程懒人入门(五):快速理解为什么说UDP有时比TCP更有优势
网络编程懒人入门(六):史上最通俗的集线器、交换机、路由器功能原理入门
网络编程懒人入门(七):深入浅出,全面理解HTTP协议
网络编程懒人入门(八):手把手教你写基于TCP的Socket长连接
网络编程懒人入门(九):通俗讲解,有了IP地址,为何还要用MAC地址?
网络编程懒人入门(十):一泡尿的时间,快速读懂QUIC协议
网络编程懒人入门(十一):一文读懂什么是IPv6
网络编程懒人入门(十二):快速读懂Http/3协议,一篇就够!
技术扫盲:新一代基于UDP的低延时网络传输层协议——QUIC详解
让互联网更快:新一代QUIC协议在腾讯的技术实践分享
聊聊iOS中网络编程长连接的那些事
IPv6技术详解:基本概念、应用现状、技术实践(上篇)
IPv6技术详解:基本概念、应用现状、技术实践(下篇)
Java对IPv6的支持详解:支持情况、相关API、演示代码
从HTTP/0.9到HTTP/2:一文读懂HTTP协议的历史演变和设计思路
脑残式网络编程入门(一):跟着动画来学TCP三次握手和四次挥手
脑残式网络编程入门(二):我们在读写Socket时,究竟在读写什么?
脑残式网络编程入门(三):HTTP协议必知必会的一些知识
脑残式网络编程入门(四):快速理解HTTP/2的服务器推送(Server Push)
脑残式网络编程入门(五):每天都在用的Ping命令,它到底是什么?
脑残式网络编程入门(六):什么是公网IP和内网IP?NAT转换又是什么鬼?
脑残式网络编程入门(七):面视必备,史上最通俗计算机网络分层详解
脑残式网络编程入门(八):你真的了解127.0.0.1和0.0.0.0的区别?
脑残式网络编程入门(九):面试必考,史上最通俗大小端字节序详解
迈向高阶:优秀Android程序员必知必会的网络基础
Android程序员必知必会的网络通信传输层协议——UDP和TCP
技术大牛陈硕的分享:由浅入深,网络编程学习经验干货总结
可能会搞砸你的面试:你知道一个TCP连接上能发起多少个HTTP请求吗?
5G时代已经到来,TCP/IP老矣,尚能饭否?
网络编程入门从未如此简单(一):假如你来设计网络,会怎么做?
网络编程入门从未如此简单(二):假如你来设计TCP协议,会怎么做?
>> 更多同类文章 ……

[2] 网络编程(高阶)资料:
高性能网络编程(一):单台服务器并发TCP连接数到底可以有多少
高性能网络编程(二):上一个10年,著名的C10K并发连接问题
高性能网络编程(三):下一个10年,是时候考虑C10M并发问题了
高性能网络编程(四):从C10K到C10M高性能网络应用的理论探索
高性能网络编程(五):一文读懂高性能网络编程中的I/O模型
高性能网络编程(六):一文读懂高性能网络编程中的线程模型
高性能网络编程(七):到底什么是高并发?一文即懂!
不为人知的网络编程(一):浅析TCP协议中的疑难杂症(上篇)
不为人知的网络编程(二):浅析TCP协议中的疑难杂症(下篇)
不为人知的网络编程(三):关闭TCP连接时为什么会TIME_WAIT、CLOSE_WAIT
不为人知的网络编程(四):深入研究分析TCP的异常关闭
不为人知的网络编程(五):UDP的连接性和负载均衡
不为人知的网络编程(六):深入地理解UDP协议并用好它
不为人知的网络编程(七):如何让不可靠的UDP变的可靠?
不为人知的网络编程(八):从数据传输层深度解密HTTP
不为人知的网络编程(九):理论联系实际,全方位深入理解DNS
不为人知的网络编程(十):深入操作系统,从内核理解网络包的接收过程(Linux篇)
不为人知的网络编程(十一):从底层入手,深度分析TCP连接耗时的秘密
不为人知的网络编程(十二):彻底搞懂TCP协议层的KeepAlive保活机制
不为人知的网络编程(十三):深入操作系统,彻底搞懂127.0.0.1本机网络通信
IM开发者的零基础通信技术入门(一):通信交换技术的百年发展史(上)
IM开发者的零基础通信技术入门(二):通信交换技术的百年发展史(下)
IM开发者的零基础通信技术入门(三):国人通信方式的百年变迁
IM开发者的零基础通信技术入门(四):手机的演进,史上最全移动终端发展史
IM开发者的零基础通信技术入门(五):1G到5G,30年移动通信技术演进史
IM开发者的零基础通信技术入门(六):移动终端的接头人——“基站”技术
IM开发者的零基础通信技术入门(七):移动终端的千里马——“电磁波”
IM开发者的零基础通信技术入门(八):零基础,史上最强“天线”原理扫盲
IM开发者的零基础通信技术入门(九):无线通信网络的中枢——“核心网”
IM开发者的零基础通信技术入门(十):零基础,史上最强5G技术扫盲
IM开发者的零基础通信技术入门(十一):为什么WiFi信号差?一文即懂!
IM开发者的零基础通信技术入门(十二):上网卡顿?网络掉线?一文即懂!
IM开发者的零基础通信技术入门(十三):为什么手机信号差?一文即懂!
IM开发者的零基础通信技术入门(十四):高铁上无线上网有多难?一文即懂!
IM开发者的零基础通信技术入门(十五):理解定位技术,一篇就够
以网游服务端的网络接入层设计为例,理解实时通信的技术挑战
长连接网关技术专题(二):知乎千万级并发的高性能长连接网关技术实践
长连接网关技术专题(三):手淘亿级移动端接入层网关的技术演进之路
长连接网关技术专题(五):喜马拉雅自研亿级API网关技术实践
从根上理解高性能、高并发(一):深入计算机底层,理解线程与线程池
从根上理解高性能、高并发(二):深入操作系统,理解I/O与零拷贝技术
从根上理解高性能、高并发(三):深入操作系统,彻底理解I/O多路复用
从根上理解高性能、高并发(四):深入操作系统,彻底理解同步与异步
从根上理解高性能、高并发(五):深入操作系统,理解高并发中的协程
从根上理解高性能、高并发(六):通俗易懂,高性能服务器到底是如何实现的
从根上理解高性能、高并发(七):深入操作系统,一文读懂进程、线程、协程
>> 更多同类文章 ……

[3] 移动端弱网相关资料:
现代移动端网络短连接的优化手段总结:请求速度、弱网适应、安全保障
聊聊iOS中网络编程长连接的那些事
移动端IM开发者必读(一):通俗易懂,理解移动网络的“弱”和“慢”
移动端IM开发者必读(二):史上最全移动弱网络优化方法总结
全面了解移动端DNS域名劫持等杂症:原理、根源、HttpDNS解决方案等
美图App的移动端DNS优化实践:HTTPS请求耗时减小近半
百度APP移动端网络深度优化实践分享(一):DNS优化篇
百度APP移动端网络深度优化实践分享(二):网络连接优化篇
百度APP移动端网络深度优化实践分享(三):移动端弱网优化篇
爱奇艺移动端网络优化实践分享:网络请求成功率优化篇
美团点评的移动端网络优化实践:大幅提升连接成功率、速度等
5G时代已经到来,TCP/IP老矣,尚能饭否?
微信Mars:微信内部正在使用的网络层封装库,即将开源
如约而至:微信自用的移动端IM网络层跨平台组件库Mars已正式开源
谈谈移动端 IM 开发中登录请求的优化
腾讯原创分享(一):如何大幅提升移动网络下手机QQ的图片传输速度和成功率
腾讯原创分享(二):如何大幅压缩移动网络下APP的流量消耗(下篇)
腾讯原创分享(三):如何大幅压缩移动网络下APP的流量消耗(上篇)
IM开发者的零基础通信技术入门(十一):为什么WiFi信号差?一文即懂!
IM开发者的零基础通信技术入门(十二):上网卡顿?网络掉线?一文即懂!
IM开发者的零基础通信技术入门(十三):为什么手机信号差?一文即懂!
IM开发者的零基础通信技术入门(十四):高铁上无线上网有多难?一文即懂!
>> 更多同类文章 ……

即时通讯网 - 即时通讯开发者社区! 来源: - 即时通讯开发者社区!

标签:TCP 网络编程

评分

1

查看评分

上一篇:即时通讯等通信软件的网络协议和端口收集整理下一篇:理论联系实际:Wireshark抓包分析TCP 3次握手、4次挥手过程

本帖已收录至以下技术专辑

推荐方案
评论 17
看这类理论总是没耐心,这次终于仔细看完了,很好,多谢分享!
很不错
很好
签名: 该会员没有填写今日想说内容.
不错
写的很好
4次握手过程详解中
第四次挥手:
Client收到FIN后,Client进入TIME_WAIT状态,接着发送一个ACK给Server,确认序号为收到序号+1,Server进入CLOSED状态,完成四次挥手。

图片中最后一次ack的值应该是 n+1吧
基础知识,学习一下
学习一下,感谢
签名: 加油啊
学习了,很好
学习了,感谢分享
这个网站真好
引用:清风 发表于 2016-12-16 23:35
4次握手过程详解中
第四次挥手:
Client收到FIN后,Client进入TIME_WAIT状态,接着发送一个ACK给Server, ...

应该是
四次挥手看懂了 谢谢楼主啦
引用:熬夜看书 发表于 2018-12-08 12:06
四次挥手看懂了 谢谢楼主啦

清晰明了
感谢感谢
很好。
打赏楼主 ×
使用微信打赏! 使用支付宝打赏!

返回顶部